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Relaxation Problem with Quadratic Noise 
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A linear first-order equation with a quadratic colored noise is considered. An 
exact one-dimensional probability distribution of the process is obtained from 
the characteristic function. The characteristic function is calculated by means of 
special functionals of the noise. An auxiliary set of three ordinary differential 
equations (which contains a Riccati equation) is solved for all values of 
parameters of the problem. In peculiar cases, the characteristic function is 
expressed by elementary functions. Graphs of the probability density function 
are presented for a few cases. The article is a continuation of the author's 
previous paper. 

KEY WORDS:  Langevin equation; quadratic noise; probability distribution; 
exactly solved problem; relaxation problem. 

1. I N T R O D U C T I O N  

In a recent article ~1) I considered the following linear first-order stochastic 
differential equation (I use the notations of Ref. 1): 

L = cz,  + ~(,~ + y t )  ~ (1.1) 

where zeN,  for t = 0 ,  z t=zo ,  ceN,  #EN, and y, is the colored noise 
stochastic process defined by 

( y t )  = 0; ( y ,  y s ) = ( 7 / ~ ) e x p ( - e  I t - s l )  (1.2) 

with 7 and c~ fixed positive constants. 
The process yt is generated by a stochastic differential equation 

dy~ = -cry t dt + (27) 1/5 dW, (1.3) 
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under the assumption that 

( y o )  =0;  ( y 2 )  =7/c ~ (1.4) 

and W, is the standard Wiener process. 
The probability density for y, has a Gaussian form 

PI(Y, t ) =  (e/2rcT)m exp(--ay2/2y) (1.5) 

and does not depend on time. 
Our aim is to obtain the one-dimensional probability distribution 

P(z, t) for the process zt in (1.1) for all t > 0 and with the initial condition 

P(z, 0) = 6 ( z -  z0) (1.6) 

The problem is less trivial than it looks. In a previous paper ~ I obtained 
the probability function P(z, t) for the particular value of the parameters 
c = - 4 e  and 2 = 0. Here, I give an extension of the results in Ref. 1 for an 
arbitrary value of the parameter c and show that the case )~ r 0 can also be 
analyzed. 

The remainder of this paper is organized as follows. Section 2 reviews 
essential formulas and equations contained in Ref. 1. I present a set of dif- 
ferential equations, the solution of which is indispensable to the calculation 
of the characteristic function of the process zt. The solution of these 
equations is presented in Section 3. In general, the solution is expressed in 
terms of the Bessel, Neumann, and Lommel functions. In Section 4, I 
present the characteristic function and consider several special cases in 
which the characteristic function can be expressed by elementary functions. 
I also show a few curves for the probability distribution function in the 
stationary case. 

2. M E T H O D  OF S O L U T I O N  OF THE P R O B L E M  

The probability distribution P(z, t) of the process z, in (1.1) can be 
obtained from the characteristic function C(o), t) via its exponential 
Fourier transform, namely 

lf+  
P ( z , t ) = ~  &oe ic~ t) (2.1) 

- -  o o  

and C(co, t) can be expressed a s  ~  

C(oo, t) = F[y,  I o o, t] exp[i~ozo ec' + ico#2Z(e ct - 1 )/c] (2.2) 
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The functional F[yt  I co, t] is obtained from the following equality: 

F[y,  leo, t] = F1 [y,  If2 = (otle ct, t] (2.3) 

where 

f 
+ o C  

Fl[Yt](2, t] = V(y, t) dy (2.4) 
- - o o  

and the "curtailed" functional F(y, t) obeys the partial differential 
equation (2) 

OF(y, t) Iot 0 02 J 
Ot = -@y y + 7 ~ + is Ct(y2 .j_ 22y) F(y, t) (2.5) 

with the initial condition (2) 

F(y, O) = PI(Y, 0) (2.6) 

Look for a solution of (2.5) in the form 

F(y, t) = exp[A(t) y2 + B(t) y + C(t)] (2.7) 

Inserting the ansatz into (2.5), we find that the functions A(t), B(t), and 
C(t) are solutions to the following problem: 

J = 47A 2 + 2o~A + if2e ~'' (2.8a) 

= c~B + 47AB + 2i2f2e- ~' (2.8b) 

d" = c~ + 2~A + 7B 2 (2.8c) 

From Eqs. (2.7), (2.6), and (1.5) it follows that 

A(0) = -c(27; B(0) = 0; C(0) = �89 ln(c~/2~7) (2.9) 

Now, the main problem reduces to solving the system of ordinary differen- 
tial equations (2.8) with (2.9). In Ref. 1, I solved the Riccati equation (2.8a) 
only for c = - 4 e .  It turns out that the above Riccati equation can be 
solved for an arbitrary value of c. This is done in the next section. 

3. S O L U T I O N  OF  D I F F E R E N T I A L  E Q U A T I O N S  

First, we solve the Riccati equation (2.8a). By using the transfor- 
mation 

A(t) = -X( t ) /@X( t )  (3.1) 
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and the change of the independent variable 

s = 4i7s ct (3.2) 

one transforms the Riccati equation into a linear differential equation of 
the second-order 

s2(s)+ 1+ c X(s)+ X(s)=O (3.3) 

The above equation was obtained in Ref. 1, and I wrote that an 
explicit solution of this equation was known for two cases. I used Kamke's 
text, (3) in which an equation of the same form was contained, and 
suggested that these two cases exhausted all explicit solutions. Recently, I 
have succeeded in solving this equation without any restrictions on the 
parameters. For  this purpose we must perform one more transformation, 
namely 

X(S)  = S -1/2s-~' /cY(s)  (3.4) 

This leads to 

1 _ ~  Y(s)= 0 (3.5) $2 ~'~(S) -[ - ~2~-~  

A solution of this equation is known (4) (below I use the notations of Ref. 4) 
and reads 

1'2 / 2  1/2\ y ( s ) = s /  Z v ~ c S  ) (3.6) 

where 

v= 27/c (3.7) 

and Zv stands for an arbitrary solution of Bessel's differential equation. 
Taking into account Eqs. (3.1), (3.2), and (3.4), we can write the 

general solution in the form 

where 

and 

X( t ) = e~'[ CoJ~(ft) + Mv(ft)]  

f~ = f0 exp( - ct/2); fo = 4(i7s 

M y =  Y~ or M v = J  

are the Neumann and Bessel functions, respectively. 

(3.8) 

(3.9) 

(3.10) 
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The constant Co is determined from the initial condition (2.9) for A(t) 
and reads 

with 

M~(fo ) +_ gMv + ,(fo) 
Co = (3.ll)  

J~(fo) - gJ~+ ,(fo) 

g =  ( i7(2 ) ~/2/c~ (3.12) 

In Eq. (3.11) and in all expressions below, the upper sign refers to 
M~ = J ~ and the lower sign refers to M~ = Y~. 

Using recurrence relations for the Bessel and Neumann functions, (4) 
from Eq. (3.8) we have 

X(t)=2o~gexp[(2c~-c) t /2][CoJ~+,(f t)T-Mu+l(f t)]  (3.13) 

Let us 
(2.8b) and taking into account (2.9), we find the solution for B(t), 

B(t) = --(2c/47)[CoJv(f, ) + Mu(f,)] 1 

x x[CoJv(x ) + My(x)] dx 

The integral in Eq. (3.14) can be calculated (4) 

now solve the remaining equations (2.8). Substituting (3.1) into 

(3.14) 

f xJ~(x) dx=vxJv(x)So,~ l ( x ) - xJ~_ l (x )S l ,u (x )  (3.15) 

The same formula holds for the Neumann function and S~,v stands for the 
Lommel function. 

Using Eq. (3.15) and the recurrence relations for the Lommel and 
Bessel functions, one obtains the solution (3.14) explicitly as 

(2~/2) B(t) = c~f, So,v+ m(f,) - J((t) Sl,v(f,)/X(t) 

+ ~gfoe~'So,v-,(fo) W/X(t) (3.16) 

where W =  W{Jv(fo), Mv(fo)} is the Wronskian of the functions J~(fo) and 
Mv(fo), 

W{Jv(x), J_v(x)} = (2/~x)sin ~r(v + 1) (3.17a) 

W{Jv(x), Yv(x)} = 2/lrx (3.17b) 
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Equation (2.8c) has the following solution: 

1 ;2 
C(t)=et +-~ ln[eX(O)/2rcyX(t) ] + y ds B2(s) (3.18) 

Equations (3.1) with (3.8) and (3.13) as well as Eqs. (3.16) and (3.18) 
determine the "curtailed" functional F(y, t), (2.7), in a unique manner, and 
from Eq. (2.4) we are able to find the functional FI[y, IO, t]. 

4. F INAL S O L U T I O N S  A N D  S O M E  SPECIAL  C A S E S  

The formula for the functional Fl[y,]f2, t] can be presented in the 
form 

F1Eyt 1(2, t] = [2eX(O)/X(t)] 1/2 

xexp et+yX(t) B2(t)/J((t)+7 B2(s) ds (4.1) 

The dependence of Fl[yt]O, t] upon O is hidden in the parameters fo 
[-Eq. (3.9)] and g [Eq. (3.12)]. The expression (4.1) holds for arbitrary 
values of parameters c,/~, 2 e ~ and c~, 7 e N +. A compact formula for the 
characteristic function C(c,, t) can be obtained for the case 2 = 0  and 
becomes 

C(~~ (2~-c)  ~- iCozoea 1 

T- W{Jv(fo,), Mv(f,o) } .] 1/2 
x .jv+,(f~o) Mv--l(~(t~)~-M---~+-~)j~_l(f~(t)) j (4.2) 

f,o(t) = f,o exp(ct/2) (4.3a) 

f~, = (4c~/c) ro x / ~  (4.3b) 

g,o = ro ~ (4.3c) 

and 
r o = (i7#)1/2/c~ (4.3d) 

The characteristic function (4.2) can be expressed by elementary functions 
for the half odd integer order 

v=(2n+l)/2; n = 0 ,  _+1, _+2 .... (4.4) 

First, let us consider the positive order, v > 0. 

where 
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A. In the simplest  case, n = 0, v = 1/2, and c = 4c~ > 0. Fo r  this case 
we have 

FEy,]co, t]={cos[go(eZ~_l)]_go~sin[go~(e2~,_l)]} 1/2 (4.5) 

It  can be shown that  a l though P(z, t) exists for all finite t ime t > 0 ,  the 
s ta t ionary  dis tr ibut ion satisfies 

P~t(z) = lira P(z, t) = 0 (4.6) 
t ~ c ~  

This is correct  for all c > 0  and it is related to unstable  solutions of  
Eq. (1.1). The  s ta t ionary  density exists only for c < 0 .  The case c < 0  refers 
to re laxat ion and 

where 

lf+  
= e FstEy, I col (4.7) Pst(Z) ~ do) i~z 

- - o o  

Fst[ytle)] = lim FEytlco, t] (4.8) 
t ~ c o  

and, as is seen f rom Eq. (2.2), Pst(Z) does not  depend on the initial state z0 
of the process (an ergodic process).  

B. Fo r  the first negative order  n = - 1 ,  v = - 1 / 2 ,  and c =  -4ct.  This 
case was considered in Ref. 1. 

C. Fo r  v = - 3 / 2 ,  c = -4c~/3 and 

FEy, lco, t] 

= (3g~) m {(1 - 3gLe 4~,/3) s in[3g~(1 - e-2~'/3)] 

+ 3g~e-2~'/3 cosE3g~(1 - e 2~t/3)] } -1/2 (4.9) 

and 

Fst[Y, Ico] = [3go)/sin(3g~)] 1/2 (4.10) 

D. For  v = - 5 / 2 ,  c = -4c~/5, the expression for FEY, I co, t] is quite 
lengthy, but  the s ta t ionary  form reads 

FstEY, I col = {(5go,)3/[3 s in (5goA-  15g~ cos(5goj)] } 1/2 (4.11) 

A detailed analysis of  the results ob ta ined  will be presented in a separa te  
paper.  The  dis tr ibut ion funct ion P(z, t) of the process of interest is 
calculated f rom Eq. (2.1) by the numerical  in tegrat ion of the many-va lued  
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functions [as, e.g., (4.9)]. In order  to obtain insight into the shape of the 
probabil i ty distribution, consider Fig. 1, which shows the stat ionary 
probabil i ty density Pst(z) for case B, v = - 1 / 2 ,  

1 f + coo e iwz 
Pst(Z)--"= 2-~ -co dee (cos g~o) '/2 (4.12) 

and a new parameter  a ~ R, 

= ~2~2/2 (4.13) 

has been introduced.  It will facilitate the study of the problem of the white 
noise limit c~--. oe in Eq. (1.1) (see Section 6 in Ref. 1). In the case of 
Eq. (4.13), we have only one free parameter  0"2// in (4.12). The charac- 
teristic feature of the probabil i ty  function (4.12) is its vanishing for z < 0 
when # > 0 and vice versa. In other  words, Pst(Z) is propor t ional  to the 

P s i ( z )  

1,5 / 

0,E 

Fig. 1. 

u r ~ i , 0 0,5 t,0 1,5 z 

Shape of the probability distribution Pst(Z) for c = -4~ the following values of 62,1/: 
(a) 5, (b) 8, (c) 12, (d) 16. 
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Heaviside function O(z sign #). This is due to the fact that singularities of 
the integrand lie on the negative half of the imaginary axis for # > 0. For 
# < 0, the probabili ty density can be obtained form Fig. 1 by reflection with 
regard to the vertical axis. 

In closing, I note that the remarks contained in Section 6 in Ref. 1, 
which concern the white noise limit, are correct for all negative fixed values 
of the parameter  v because in this case c is proport ional  to the parameter  ~. 
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